

John Lim,¹ Mayank Kejriwal²

¹ Northwestern University, ² University of Southern California Information Sciences Institute

Introduction

Game theory is an influential study designed to understand strategic interactions among rational players. While Prisoner's Dilemma, a classic model of game theory, has been extensively studied for various agent interactions, its applications in **open**world settings, where unexpected events can, and do, occur, remains relatively shallow due to the heightened complexity involved.

Developing both theoretical and empirical methodologies in support of the open-world game theory have the potential for broader impact as AI systems continue to be applied to realworld, or open-world settings.

Prisoner's Dilemma

Figure 1: Pay-off Matrix in the Prisoner's Dilemma Game

- Two Decisions: Cooperate or Defect
- 4 Total Outcomes: Different payoff for each player
- $T > R > P > S \rightarrow$ Dominant Strategy: Defect
- Non-cooperative and Non-Zero-Sum
- Single or Iterative: Players can play the game • consecutively, giving them the chance to learn about their counterpart and act accordingly

Open-World Game Theory

Pure vs. Mixed Strategy

What if players make their decisions based on some probability?

Expected Value:

q = probability of player 1 defectingp = probability of player 2 defecting

Figure 2: Probabilistic Approach To Iterative Prisoner's Dilemma Game T = 5, R = 3, P = 1, S = 0

Figure 3: Penalties Introduced to Iterative Prisoner's Dilemma Game T = 5, R = 3, P = 1, S = -3

- Player with higher probability of defecting \rightarrow Greater total points
- Both players defecting more \rightarrow Less Total Points
- Increasing Variance \rightarrow Disparity between EV and total points
- Penalties \rightarrow Higher Variance

$$Var(PD) = (R - EV)^{2}x_{1} + (S - EV)^{2}x_{2} + (T - EV)^{2}x_{3} + (P - EV)^{2}x_{4}$$
$$Var(PD_{1} + PD_{2} \dots PD_{100}) = 100 \times Var(PD)$$

•

Work performed under REU Site program supported by NSF grant #2051101

Change of Strategies

How do I detect a change in high confidence?

Sliding Window:

Next Steps

- Develop various detection methods • Assess and compare the methods
 - **1. False Positive Rate**
 - **2. Prediction Error**
- How to act after the detection?
 - Introduce other players and elements into the game