Motivation

- Reusable software:
 - reproduce computational methods
 - easy to integrate with other data and software
- Understanding software is time consuming
- Software metadata registries
 - require manual curation
- SM2KG (Software Metadata to Knowledge Graphs)
 - extracts software metadata
 - organizes into knowledge graphs

Approach

- Corpus
 - Default README of 74 Github repositories
 - Plain text rendered Markdown
 - Text split by newlines for convenience
 - Each excerpt labeled by class
 - 50% positive, 50% negative per classifier

- Data Preparation
 - Default scikit-learn tf-idf tokenizer without stemming

- Classifiers
 1) Logistic Regression, liblinear solver
 2) Multinomial Naive Bayes Classifier

Evaluation

- Stratified 5-fold Cross Validation ROC
- Tf-idf + (Logistic Regression / Naive Bayes) results are promising (AUC > 0.89)

Future Work

- Expand corpus
- Use markdown metadata as a classification feature
- Test deep learning architectures

Problem Statement

Given a README excerpt, e.g.

<table>
<thead>
<tr>
<th>pyGeoPressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Citation</td>
</tr>
<tr>
<td>Installation</td>
</tr>
<tr>
<td>Invocation</td>
</tr>
</tbody>
</table>

- We aim to identify:
 - description (what does this software do?)
 - installation (how do I set it up?)
 - invocation (how do I invoke it?)
 - citation (who do I credit?)
- Each class has its own linguistic characteristics

Project URL:
https://github.com/KnowledgeCaptureAndDiscovery/SM2KG
Work performed under REU Site program supported by NSF grant #1659886